DATA TRANSMISSION THROUGH GIGABIT ETHERNET FROM A
LVDS INTERFACE USING A SOC (SINGLE BOARD COMPUTER +
FPGA)

David G. Shatwell Joaquin Verastegui
Department of Electrical Engineering Department of Research, Development and Innovation
University of Engineering and Technology—UTEC Jicamarca Radio Observatory
Lima 15063, Peru Geophysical Institute of Peru
david.shatwell@utec.edu.pe Lima 15464, Peru

jverastegui@igp.gob.pe

John Rojas
Department of Research, Development and Innovation
Jicamarca Radio Observatory
Geophysical Institute of Peru
Lima 15464, Peru
jrojas@igp.gob.pe

ABSTRACT

The objective of this project was to design and implement a system capable of transmitting data at
high speeds from the JARS 2.0 radar to a remote computer through Gigabit Ethernet using a system
on chip (SoC). The system has two main stages: (i) data acquisition from the LVDS interface and (ii)
data transmission to the computer through a communication protocol. In order to acquire data from
the LVDS interface, the FPGA was used to implement a system capable of multiplexing and copying
the data to a memory shared with the processor. Then, a program running on the processor was used
to read the data from the shared memory and send it to the PC with the UDP protocol.

Keywords JARS 2.0 - Gigabit Ethernet - SoC - LVDS - UDP

1 Introduction

The JARS system acquires data from the main radar of the Jicamarca Radio Observatory and transmits it via a LVDS
interface. Custom hardware is then used to collect the data from the interface and send it to a remote computer using a
standard communication protocol. In JARS 2.0, the UDP protocol stack was implemented on a Spartan 6 FPGA for this
purpose. However, there are several disadvantages with this approach: the evaluation board and the software used to
program it (ISE Design Suite) are discontinued, the LVDS connector is proprietary, the communication bandwidth is
limited by the FPGA, and the communication protocol is limited to UDP only.

There are now better alternatives, such as SoCs (System-on-Chip), which have an FPGA and a microprocessor. The
main advantage of a SoC for the implementation of an LVDS-Ethernet interface is that it can use a distribution of
the Linux operating system that handles the entire network load. In other words, by using a microprocessor, it is not
necessary to implement the TCP/IP and UDP protocol stacks directly on the FPGA fabric. Other advantages of modern

SoCs are their low cost (around $100), high frequencies (600 MHz), non-proprietary LVDS connectors and compact
size.

https://orcid.org/0000-0001-6774-7334

Data Transmission Through Gigabit Ethernet from a LVDS Interface Using a SoC (Single Board Computer + FPGA)

FPGA Fabric ‘
A
32,64, or 128 Bits 32 Bits 32, 64, or 128 Bits
(hef_axi_clk) (h2f_Iw_axi_clk) (f2h_axi_clk)
M 32 Bits 32 Bits S
s | (4_mp_clk) (4_mp_clk) [8§
L AHB | AHB L
(GPV) (GPV)
HPS-10-FPGA m M FPGA-to-HPS
Bridge Bridge
Lightweight
S HPS-to-FPGA Bridge M
AXI AX
A

S
AXl | (GPv)

4
64 Bits 32 Bits 64 Bits
(13_main_clk) (14_mp_clk) ¥ (13_main_clk)
M M S
AXl AXI AXI
(L3 Main Switch) (L3 Slave Peripheral Switch) (L3 Main Switch)

L3 Interconnect

Figure 1: HPS-FPGA communication system.

1.1 JARS 2.0 data transmission

The JARS system sends data acquired from the main radar as 32-bit words. When using the 8 antenna channels, JARS
is capable of sending data at a frequency of 1 MHz, which represents a speed of 256 Mbps. The signals are sent
from JARS through a low-voltage differential signaling (LVDS) interface. An advantage of LVDS over other types of
single-ended schemes is that it is less susceptible to common mode noise, because noise coupled onto the interconnect
is seen as common mode modulations by the receivers and is rejected [Huq and Goldie} |199§|].

1.2 DEO-Nano-SoC

The DEO-Nano-SoC is a development board from Terasic containing a Cyclone V SoC from Intel (formerly Altera).
The Cyclone V consists of an FPGA and a dual-core ARM A9 processor. The FPGA and microprocessor communicate
with each other via three AXI buses, a control bus (32-bit) and two data buses (up to 128 bits), as shown on figure m
Additionally, the SoC includes multiple peripherals, such as general purpuse inputs/outputs (GPIO), an analog-to-digital
converter (ADC), one 1GB DDR3 SDRAM (32-bit data bus), one Gigabit Ethernet RJ45 connector, among others
[Terasic,|2019].

1.3 Direct access memory controller

A direct access memory (DMA) controller is a circuit that allows peripherals to access the system’s memory inde-
pendently of the CPU. Without a DMA controller, the CPU is fully occupied during read/write operations and cannot
perform other operations concurrently. Thus, the DMA, is able to boost the overall performance of the system in which
it is implemented [[Ahmed et al., 2019].

2 Project development

In order to develop the data transmission system, the first thing needed was to establish flow of data from the FPGA to
the microprocessor. Figure 2] shows the proposed system, where the thin arrows represent control signals while the thick
arrows represent data transmission. After establishing the necessary connections and flow of data, the rest of the system
design can be separated into three parts: (i) creation of FPGA blocks written in VHDL and Verilog, (ii) instantiation
of IP cores and connections between the FPGA and the processor with the Platform Designer tool, and (iii) software
development using the C language.

2.1 FPGA

A finite state machine (FSM), which is referred in this paper as SRAM_FSM, was created in the FPGA. The main
purpose of the FSM is to generate sequences of data and memory addresses for the SRAM at a frequency of 8§ MHz. It
should be noted that in the real system, data from JARS arrives in 8-byte packets and must be demultiplexed before

Data Transmission Through Gigabit Ethernet from a LVDS Interface Using a SoC (Single Board Computer + FPGA)

FPGA | HPS
SRAM_FSM |
CLK ——»{CLK WRITEDATA:> :
FPGA SRAM ;:> DMA ;:::() HPS On-Chip RAM

RESET ——{RESET ADDRESS > |
|
EN_FPGA |« |

: ARM Cortex-A9

RAM_FLAG } >

|
|

Figure 2: Data flow of the proposed system.

being stored in memory. However, for testing purposes it is easier to use a number generator connected directly to the
SRAM memory.

2.2 SoC

The following Intel IP cores were instantiated on the SoC:

2.2.1 PLL

the first IP core is a PLL that generates 2 clock signals from a 50 MHz reference. The first clock has a frequency of 100
MHz and is connected to the HPS-FPGA buses, the SRAM and the PIOs. The second clock has a frequency of 400
MHz and is used exclusively for the "NUM_GENERATOR" block to generate numbers at a rate of 8§ MHz.

2.2.2 HPS

The hard processor system (HPS) block refers to the ARM Cortex-A9 processor. Despite the large number of inputs
and outputs, the processor only uses two of them. The "h2f_axi_slave" bus is connected to the "write_master" port of
the DMA and is used to acquire data from the FPGA. On the other hand, the "f2h_axi_master" bus is connected to the
DMA control port and to the "en_fpga" and "sram_flag" PIOs, which serve as control signals between the FPGA and
the processor.

2.2.3 DMA

The DMA block is used to copy the data from the SRAM memory in the FPGA to the On-Chip RAM of the processor.
This block reads data from the SRAM through the "read_master" port and writes to the On-Chip RAM through the
"write_master" port. In addition, it has a software-controlled port that is used to indicate the memory locations to be
transferred from the FPGA to the microprocessor.

224 SRAM

The SRAM block is a 64 KB memory with 32-bit words instantiated in the FPGA. This memory has two slave ports:
one for reading and one for writing. As mentioned before, the read port is connected to the DMA while the write port is
exported to the FPGA and controlled by the "SRAM_FSM " block.

2.2.5 PIO: FPGA enabler and SRAM flag

The "en_fpga" block works as a 1-bit control signal that is used to enable the FPGA blocks from the main program. Its
"s1" port is connected to the "h2f_axi_master" port of the processor. On the other hand, the "RAM_flag" blockworks as
a 6-bit control signal that is used to tell the processor which section of SRAM memory is being written. Its "s1" port is
also connected to the processor’s "h2f_axi_master" port.

Data Transmission Through Gigabit Ethernet from a LVDS Interface Using a SoC (Single Board Computer + FPGA)

Configure UDP

!

Enable FPGA

'

Synchronize

v

SRAM flag

v

Activate DMA

v

Send data (UDP)

|

Figure 3: SoC program flow chart.

Table 1: Virtual memory directions used in the program.

Component Port name Base direction Offset

F2H AXI Slave hps_0.f2h_axi_slave 0xFFFF0000 0x00000000
DMA Control Port dma.control_port_slave 0xC0000000 0x00000000

SRAM SRAM_0.s1 0xC0000000 0x00000000
FPGA Enabler en_fpga.sl 0xC0000000 0x00000020
SRAM Flaf sram_flag.s1 0xC0000000 0x00000030

2.3 ARM Cortex-A9 microprocessor

In order to collect the data from the SRAM and send it over Ethernet, a program in the C language was written. The
flowchart of this program is shown on Figure 3]

2.3.1 Address acquisition from virtual memory

The first thing to do in the program is to define macros with the memory addresses to which the FPGA components are
mapped (Table[I)). Since Linux does not allow the user to directly access the physical memory, pointers storing virtual
memory addresses were also defined.

Then, within the main function, the /dev/menm file is opened to obtain a file descriptor and the virtual memory address
of the LW HPS-to-FPGA Bridge bus is acquired with the mmap function. Pointers pointing to the virtual memory
address of the DMA control port and the "sram_flag" and "en_fpga" components are defined as the bus address with an
offset. In this case, the memory offset of the components is shown in Table [T}

2.3.2 UDP configuration

In order to make the UDP configurations, the first thing needed was to open a socket to transmit data (Tx) with the
socket function and specify that IPv4 and the UDP protocol were going to be used. In addition, a "talker" structure
was created with the IP address and the port to which the data was going to be sent.

2.3.3 Synchronization

Before the main loop, the control signal "en_fpga" is used to enable the FPGA so that the first data arriving is at the first
memory location. Then, the program waits for a change in the SRAM flag for the DMA to start transferring data to the

Data Transmission Through Gigabit Ethernet from a LVDS Interface Using a SoC (Single Board Computer + FPGA)

Configure UDP

>

v

Receive data by
UDP

!

Clean buffer

Figure 4: PC program flowchart.

On-Chip RAM. This synchronization process ensures that the following three processes are running in parallel at all
times:

* Processor sends data on section n of On-Chip RAM through UDP
* DMA copies section n + 1 of SRAM to On-Chip RAM

* Finite state machine stores data coming from JARS on section n 4 2 of SRAM

2.3.4 Main loop

In the main loop, the program reads the SRAM flag again and starts transferring the corresponding memory section with
the DMA. At the same time that the data is being transferred, the program determines the memory addresses of section
n and uses the sendto function to send the data of that section via UDP. The sendto function uses as arguments the
port file descriptor, the pointer to the array and the "server" structure created in previous parts of the program.

2.4 Target PC

In order to acquire data sent by UDP from the SoC, a program written in the C language similar to that of the UDP
server was also created. The flowchart of the program is shown in Figure [}

2.4.1 UDP configuration

To configure the UDP protocol, the program opens a socket to receive data using the socket function and specifies that
the IPv4 and UDP protocols will be used. In addition, a "listener" structure is created with the IP address and the port
through which the data is received and a 1024 bytes buffer to store the data.

2.4.2 Main loop

In the main loop of the UDP client, the program receives packets with the receivefrom function, which receives as
arguments the file descriptor generated by the socket function, the buffer to store the data and the "listener" structure
created previously. Once the packet is received, the buffer is cleared and the process is repeated.

3 Results

3.1 Hardware validation

To verify the operation of the finite state machine created in the FPGA, a testbench was created with the Modelsim
tool. The results of the testbench are shown in Figure 5. It can be seen that, with a clock signal of 350 MHz, a data
and memory address is generated every 125 ns (8 MHz). This prooves that the state machine connected to the SRAM
memory is working properly.

Data Transmission Through Gigabit Ethernet from a LVDS Interface Using a SoC (Single Board Computer + FPGA)

é|clk

e reset

é en_fpga

W address[13:0] 0000

W writedata[31:0] 00000000
W sram_flag[5:0] 00

Figure 5: Finite state machine simulation.

3.2 Software validation

3.2.1 Packet content validation

In the first test used to validate the software, it was verified that the contents of the packets received by the PC are the
same as those sent by the SoC. For this purpose, some modifications were made to the SoC and PC codes. In the SoC,
a vector was created to store the contents of 10 consecutive packets, which is equivalent to the total contents of the
memory. Once the main loop was executed 10 times, the program printed the contents of the vector along with the
status of the SRAM flag on the terminal. From this test it was determined that the contents of all packets on the target
PC are identical to those sent by the SoC.

3.2.2 Percentage of received packets validation

The objective of the second test was to verify the percentage of packets received by the PC. To do this, 10 tests were
performed consisting of the SoC sending 100 packets and, with a counter, verifying how many packets reached the
destination PC. With this test it was determined that the percentage of packets received by the PC is approximately
96.5%.

4 Discussion

To make the data forwarding system work properly, it is necessary to take into account the clock frequency connected to
the data buses and system components, especially the DMA. A very low frequency (<50 MHz) causes the data transfer
between the FPGA and the processor to be slow, which in turn causes packets to be lost, while a very high frequency
(>150 MHz) causes the SoC processor to hang.

As for the percentage of packets received, it was observed that there was no variation between the intermediate
frequencies (50 to 100 MHz). It is believed that this happens because the bottleneck is not in the AXI buses or in the
DMA, but in the SoC program that sends the data by the UDP protocol.

5 Conclusions

In the development of this project, it was possible to work with the DEO-NanoSoC development board to send data
generated in the FPGA over Ethernet at a speed of 256 Mbps. The system writes the data arriving at the SoC to SRAM
memory, and then reads and sends the data over Ethernet.

The use of the Platform Designer tool of the Quartus Prime program proved to be very useful for the development of
the project. This tool is not only necessary to design the buses that connect the FPGA to the processor, but also to easily
instantiate IP cores in the FPGA. However, in order to create the buses it is necessary to have a good understanding of
how the data flow inside the SoC works. For this purpose, it was very useful to read the Cyclone V manual, which
explains in detail how the SoC works.

6 Recommendations

In a future work, it is recommended to find a way to optimize the code that runs on the SoC in order to improve the
percentage of packets sent correctly. In addition, it is recommended to make a shield for the DEO-Nano-SoC where the
LVDS wires of the JARS can be connected and make more accurate tests.

Data Transmission Through Gigabit Ethernet from a LVDS Interface Using a SoC (Single Board Computer + FPGA)

7 Acknowledgements

We would like to thank the Jicamarca Radio Observatory and the Geophysical Institute of Peru for having borrowed the
necessary equipment for this project.

References

Syed B Huq and John Goldie. An overview of lvds technology. National Semiconductor Application Note, 971:1-6,
1998.
Terasic. De0-nano-soc user manual. 2019.

Mohammed Altaf Ahmed, Abdullah Aljumah, and M Gulam Ahmad. Design and implementation of a direct memory
access controller for embedded applications. International Journal of Technology, 10(2):309-319, 2019.

	Introduction
	JARS 2.0 data transmission
	DE0-Nano-SoC
	Direct access memory controller

	Project development
	FPGA
	SoC
	PLL
	HPS
	DMA
	SRAM
	PIO: FPGA enabler and SRAM flag

	ARM Cortex-A9 microprocessor
	Address acquisition from virtual memory
	UDP configuration
	Synchronization
	Main loop

	Target PC
	UDP configuration
	Main loop

	Results
	Hardware validation
	Software validation
	Packet content validation
	Percentage of received packets validation

	Discussion
	Conclusions
	Recommendations
	Acknowledgements

